
1

CS193D Handout 04

Winter 2005/2006 January 11, 2006

A Crash Course in C++

Most people taking CS193D will already have some experience with C++. This handout
is a quick refresher in case it’s been a while. If you need more detail, read Chapter 1 of
the book (also coincidentally titled A Crash Course in C++).

An Annotated Hello World
The following dead simple C++ program shows all of the components of a C++ program:

// helloworld.cpp

#include <iostream> // C++ standard headers don't use ".h"

/* main() in C++ takes argc (the number of arguments) and

 argv (an array of arguments) */

int main(int argc, char** argv)

{

 // "std" is the standard C++ namespace, like a Java package

 std::cout << "Hello, World!" << std::endl;

 return 0;

}

Namespaces
Namespaces, like packages in Java, address the problem of naming conflicts between
different pieces of code. For example, you might be writing some code that has a function
called foo(). One day, you decide to start using a third-party library, which also has a
foo() function. The compiler has no way of knowing which version of foo() you are
referring to within your code.

Namespaces solve this problem by allowing you to define the context in which names are
defined. To place code in a namespace, simply enclose it within a namespace block:

// namespaces.h

namespace mycode {

 void foo();

}

2

// namespaces.cpp

#include <iostream>

namespace mycode {

 void foo() {

 std::cout << "foo() in the mycode namespace" << std::endl;

 }

}

To call the namespace-enabled version of foo():

mycode::foo(); // calls the "foo" function in the "mycode" namespace

To avoid being explicit about the namespace with every call, use using:

#include "namespaces.h"

using namespace mycode;

int main(int argc, char** argv)

{

 foo(); // implies mycode::foo();

}

Namespaces are a great example of the difference between a hacked together C++
program and a production quality program. The programs you write should be
namespace-savvy.

Preprocessor Directives
Java programmers may not be familiar with the notion of a preprocessor. A preprocessor
is like a compiler that runs over the code before the real compiler does its work. In C and
C++, lines that begin with # contain commands for the preprocessor. In C, the
preprocessor is often used to create faux constants and gross inlined functions known as
macros. These preprocessor features are present in C++ but are rarely used.

The main use of the preprocessor in C++ is the #include mechanism. Unlike Java, C and
C++ functions are declared separately from their definitions. The declaration (which for
C++ classes is confusingly referred to as a class definition) is usually placed in a file that
ends in .h. Typically, C++ header files also make use of the preprocessor to make sure

3

that they are only included a single time. Each header defines a unique symbol and will
skip its content if the symbol is already defined:

// myheader.h

#ifndef __MYHEADER_H__

#define __MYHEADER_H__

// content of the header goes here

#endif // __MYHEADER_H__

Worth noting: In C++, the standard language headers are included using angle brackets
(< and >) and do not traditionally use ".h", as shown above with <iostream>. Why not?
Well, all of the standard C headers are also available within C++. When using the C
headers, you do include the .h.

Variables, Types, Conditionals, Loops, etc.
Most of the basic types and other constructs are similar between C, Java, and C++. For
example, the following snippet of code works in all three languages:

 int result = inValue;

 for (int i = inValue - 1; i > 1; i--) {

 result *= i;

 }

 return result;

Dynamically Created Arrays and Heap Memory
Recall that standard arrays live on the stack and their size is determined at compile time:

int* myArray[30];

To create an array whose size is determined at runtime, you declare it on the heap by
allocating new memory:

int* myArray = new int[arraySize];

Heap memory must be released manually by calling delete. When releasing memory that
was allocated an array, you must use the bracket version of delete:

4

delete[] myArray;

Heap memory is also used in C to achieve pass-by-reference. We will get into pointer
mechanics later in the quarter. For now, we don't need to use pointers for pass-by-
reference because we have…

References
A reference is basically a short-hand for a pointer without the messiness of dereferencing
or the ambiguity of ownership. Java doesn't have an analogous concept because object
arguments to Java methods are passed by reference automatically. Since Java has an
object class for every corresponding basic type (e.g. Integer for int), there is always a
simple way to achieve pass-by-reference.

In C++, the & character is used to indicate that a variable is a reference. For now, we'll
just focus on references as parameters to functions and methods. There are some
subtleties we'll get into later.

The first version of addOne() below does not use a reference, so the variable that is
passed in remains unchanged. The second version uses a reference, so the underlying
variable is actually modified within the function. References can be used for basic types
as well as more complex types, like classes.

void addOne(int i)

{

 i++; // has no real effect since this is a copy of the original

}

void addOne(int& i)

{

 i++; // actually changes the original variable

}

Strings
C++ programmers make use of both traditional C-style strings (arrays of characters with
a null terminator) and the C++ string class. The string class works much like the Java
String class, which is to say that it behaves like you would expect:

#include <string>

#include <iostream>

using namespace std;

5

int main(int argc, char** argv)

{

 string str1 = "Hello";

 string str2 = "World";

 string str3 = str1 + " " + str2;

 cout << "str1 is " << str1 << endl;

 cout << "str2 is " << str2 << endl;

 cout << "str3 is " << str3 << endl;

 if (str3 == "Hello World") {

 cout << "str3 is what it should be" << endl;

 } else {

 cout << "hmmm... str3 isn't what it should be" << endl;

 }

 return 0;

}

Classes
For people who don't have much experience with Object-Oriented Programming, we'll be
talking more about classes in (no pun intended) an upcoming class. Until then, just think
of classes as similar to C structs with associated functions. Here is the syntax for a class
definition:

// Calculator.h

class Calculator

{

 public: // external code can call these methods

 Calculator(); // constructor

 ~Calculator(); // destructor

 int add(int num1, int num2); // method

 float divide(float numerator, float denominator); // method

 bool getAllowNegatives(); // method

 void setAllowNegatives(bool inValue); // method

 protected: // external code can't access these members

 bool fAllowNegatives; // data member

6

}; // note the semicolon at the end!

The functionality, or methods, of the classes are defined as shown:

// Calculator.cpp

#include <iostream>

#include "Calculator.h"

Calculator::Calculator()

{

 fAllowNegatives = false; // initialize the data member

}

Calculator::~Calculator()

{

 // nothing much to do in terms of cleanup

}

int Calculator::add(int num1, int num2)

{

 if (!getAllowNegatives() && (num1 < 0 || num2 < 0)) {

 std::cout << "Illegal negative number passed to add()" <<

std::endl;

 return 0;

 }

 return num1 + num2;

}

float Calculator::divide(float numerator, float denominator)

{

 if (!getAllowNegatives() && (numerator < 0 || denominator < 0)) {

 std::cout << "Illegal negative number passed to divide()" <<

std::endl;

 return 0;

 }

 return (numerator / denominator);

}

bool Calculator::getAllowNegatives()

7

{

 return fAllowNegatives;

}

void Calculator::setAllowNegatives(bool inValue)

{

 fAllowNegatives = inValue;

}

Finally, here's how other parts of the code use and interact with the class:

// CalculatorTest.cpp

#include <iostream>

#include “Calculator.h”

using namespace std;

int main(int argc, char** argv)

{

 Calculator myCalc; // stack-based Calculator

 myCalc.setAllowNegatives(true);

 int result = myCalc.add(2, 2);

 cout << “According to the calculator, 2 + 2 = “ << result << endl;

 Calculator* myCalc2; // heap-based Calculator

 myCalc2 = new Calculator(); // allocate a new object

 myCalc2->setAllowNegatives(false);

 float result2 = myCalc2->divide(2.5, 0.5);

 cout << "According to the calculator, 2.5 / 0.5 = " << result2 <<

endl;

 return 0;

}

If You Need More Review…
For most of you, this handout was probably just a refresher. However, if you're coming
from a C background or you need a little more help in any of these areas, check out
Chapter 1 of the book. It has the same sections with similar examples, but much more
detail.

