
AMS 148: Chapter 1: What is Parallelization

1 Introduction of Parallelism

Traditional codes and algorithms, much of what you, the student, have experienced previously has been
computation in a sequential setting, by one processor. That is, each instruction is computed in series,
one after the other. Take for example, an algorithm to compute the linear combination

y = cx + b

where c is a constant, y,x, and b are vectors of size n.

Algorithm 1: A simple sequential add/multiply

Data: x,b, c
Result: y

1 for i = 0→ n− 1 do
2 temp = cxi;
3 yi = temp + bi;

4 end

In algorithm 1, the computer reads in the vectors x,b and the constant c. Then, as the index i is run
from 0 to n − 1, a temporary variable used to store in multiplication of the ith entry of x multiplied to c.
After this, the temporary variable is added to the ith entry of b and stored in the ith entry of y. This is
purely sequential algorithm, and does n mulitplications and n additions.

Most modern computers have processors with multiple cores in them for the running of applications.
For example, my computer has an Intel i7-4790K, which is a Quad-Core processor. This means that the
processor can execute as if it were four different processors. We could run four programs in unison or use
the cores for one application. In this class we will be doing the latter.

Some computers or compute systems have multiple processors in them, that could have multiple cores
on the processor. This type of architecture is common on traditional supercomputers. We will discuss the
difference between a core and processor in a bit more detail in future chapters. Now, we can cast algorithm 1
in parallel.

Algorithm 2: A simple parallel add/multiply

Data: i, xi, bi, c
Result: yi

1 Thread i reads xi, bi, c;
2 for each thread do
3 temp = cxi;
4 yi = temp + bi;

5 end
6 Thread i exports yi;

Here, a thread is a sequence of programmed instructions handled by a processor or core, and depending
on the architecture of the processor, a core may be able to handle one or a couple of threads simultaneously.
Algorithm 2 is very similar in nature to algorithm 1, only instead of 1 thread doing the n multiplications and
additions, we have n threads doing 1 multiplication and addition simultaneously. This is possible because

1

the operation is embarassingly parallel, i.e. each step is independent computationally and data-wise from
the others. With an embarassingly parallel operation, the speed of the operation is essentially limited by
the number of cores at the user’s disposal. Not all algorithms will be able to parallelized in this way, as will
be illustrated in the following sections. For now, we will treat, cores, processors, and threads the same, as
computational devices to perform operations. However, later we will see that they are technically different.

We can examine sequence diagrams for a general sequential algorithm versus a general parallel algorithm.
Figure 1 shows a generalized sequential loop that operates on data, then decides whether or not to stop based
on an index counter. Algorithm 1 is a specific example of this type of process.

Figure 1: Sequence Diagram for Sequential Algorithm

Load Data

Operate on data

i ≥ n− 1 i = i + 1

Output Results

no

yes

Now figure 2 illustrates the instructions for a parallelized algorithm, requiring n steps, with m cores or
threads, where m may be smaller than n.

2

Load Data

Partition Data into m Tasks

Thread 2 Operates

i ≥ n−1
mi = i + 1

Thread 1 Operates

i ≥ n−1
mi = i + 1

... Thread m Operates

i ≥ n−1
mi = i + 1

Join Data

Output Results

no

yes

no

yes

no

yes

Figure 2: Sequence Diagram for Parallel Algorithm

Algorithm 2 is the simple case where the number of processors or cores match the ammount of data
that needs to be processed. In that case each process is only doing one addition and multiplication. In
most applications, industrial or academic, this will not be the case. Essentially in this model, the data is
decomposed into m data sets, and each set is assigned to a processor or core. Then, each core executes serial
style sequences until the all the data in its partion is processed. This type of parallelism is typical in large
scale scientific computations, and is called domain decomposition. We’ll come back to this concept later
in the course.

1.1 Types of Parallelism

There are many types of parallelization: bit-level, instruction-level,and data-level parallelism. In this class
we will be examining and practicing data-level parallelism.

1.1.1 Bit-Level

A computer processor has a limit to the size of word, i.e. the amount of information the processor can
manipulate per cycle. Increasing the word size allowed for fewer instructions when manipulating a parcel of
data whose bit size is larger than what the processor can handle. So increasing the word size of a processor
allowed more data to be handled simultaneously by a processor.

1.1.2 Instruction-Level

A computer program is, in essence, a stream of instructions executed by a processor. Without instruction-
level parallelism, a processor can only issue less than one instruction per clock cycle (IPC< 1). These
processors are known as subscalar processors. These instructions can be re-ordered and combined into
groups which are then executed in parallel without changing the result of the program. This is known

3

as instruction-level parallelism. Advances in instruction-level parallelism dominated computer architecture
from the mid-1980s until the mid-1990s.

All modern processors have multi-stage instruction pipelines. Each stage in the pipeline corresponds to a
different action the processor performs on that instruction in that stage; a processor with an N -stage pipeline
can have up to N different instructions at different stages of completion and thus can issue one instruction
per clock cycle (IPC= 1). These processors are known as scalar processors. The canonical example of a
pipelined processor is a RISC processor, with five stages: instruction fetch , instruction decode , execute ,
memory access , and register write back. The Pentium 4 processor had a 35-stage pipeline.

A canonical five-stage pipelined superscalar processor. In the best case scenario, it takes one clock cycle
to complete two instructions and thus the processor can issue superscalar performance (IPC= 2 > 1). Most
modern processors also have multiple execution units. They usually combine this feature with pipelining
and thus can issue more than one instruction per clock cycle (IPC> 1). These processors are known as
superscalar processors. Instructions can be grouped together only if there is no data dependency between
them.

1.2 Data-Level and Task-Level Parallism

Data-level parallelism involves implementing the same task on different partions or sets of data. Algorithm 2
is a good example of data-level parallelism.

Task-level parallelism is to deconstruct a program into tasks, and assign the tasks to different threads,
cores, or processors. For example:

Algorithm 3: Task Parallel Program

1 if A TRUE then
2 Processor 1 Operates;
3 end
4 if B TRUE then
5 Processor 2 Operates;
6 end

The majority of this class will be exposing data parallelism for scientific, mathematical, and image
processing purposes. Note that the skills in this class can apply to many other fields.

2 Parallelizing Serial Algorithms

In scientific computation, parallelizing algorithms is a very important skill. The first step is to look for con-
currency. Concurrency is the attribute where many operations within an algorithm are data independent,
and can be performed at the same time, by different processors or cores.

2.1 Example 1: Vector Addition

Vector addition with a scalar multiplication is a simple example to expose concurrency, since vector addition
is done element by element. In algorithm 1, we do the addition and multiplication on each element within a
loop that was executed sequentially. However, since the each result does not rely on the previous (or next),
the algorithm can be distributed. This results in algorithm 2. The next example is far less trivial.

2.2 Example 2: The ”Modified” Gram-Schmidt Algorithm

Let us examine the Gram-Schmidt Algorithm for creating an orthonormal basis from a set of linearly in-
dependent set of vectors. Given a matrix A whose columns form a basis for the vector space RN . The
Graham-Schmidt algorithm, takes the columns of A and creates a set of orthonormal vectors {qi}, which
can be stored in a matrix Q.

For example, suppose we have two linearly independent vectors v1,v2 ∈ R2, and we want to form an
orthonormal basis using them. Then the process would be

u1 = v1

4

u2 = v2 −
〈u1,v2〉
〈u1,u1〉

u1

e1 =
u1

||u1||
; e2 =

u2

||u2||

where 〈·, ·〉 is the Euclidean inner product (dot product for real vectors), and ||v|| = 〈v,v〉1/2.
Intuitively, the Gram-Schmidt process takes a set of vectors and subtracts out the essence of the other

vectors from them. Literally, the next vector in the sequence has the projections onto the previous vectors
subtracted out of it.

Figure 3 gives a good illustration of this example.

Figure 3: 2D Gram-Schmidt, Wikipedia

Using the definition of inner product, and norm it is straight foreward to write down a numerical algorithm
for the Gram-Schmidt process. Algorithm 4 is the sequential version. Notice that this algorithm is already
set up to generalize to do QR factorization, which is the main application of Gram-Schmidt. Also for
stability purposes, the normalization takes place before the orthogonalization. For more details on why this
is, consider taking AMS 213a, numerical linear algebra.

Algorithm 4: Sequential ”Modified” Gram-Schmidt Algorithm

Data: A
Result: Q

1 for i = 0→ N − 1 do
2 qi = ai;
3 rii = ||qi||;
4 ui = qi/rii;
5 for k = 0→ i do
6 ri,k = uT

i qk;
7 qk = qk − ri,kui;

8 end

9 end

On the surface, this algorithm does not look to be easily paralizable. With a little bit of work we can
illustrate the concurrency. From Linear Algebra we know that the Gram-Schmidt can be written as the

5

subtraction of the vector ai and its projection on the vectors proceding it. That is,

qi = ai −
i−1∑
j=0

projqk
(ai)

vi =
qi

||qi||
.

Figure 4 is an illustration of this process.

Figure 4: Visual Representation of Gram-Schmidt Orthogonalization

When the algorithm is constructed as in figure 4, concurrency is revealed. In the diagram P⊥ represents
the projector operator. This is a good example of a parallizable algorithm that is not embarassingly parallel.
We have exposed concurrency in the algorithm, but not in an a wide spread since. Each qi needs to be
computed in order, but we can still distribute the computation. Notice that each boxed column can be
computed simultaneously, this is parallel portion of the algorithm. This translates to parallelizing the inner
loop of of the algorithm, resulting in algorithm 5

Algorithm 5: Parallelized Gram-Schmidt Algorithm

Data: A
Result: Q

1 Using m threads:
2 for i = 0→ int((N − 1)/m)) do
3 id = processoridint((N − 1)/m)) + i;
4 qid = aid;
5 rii = ||qi||;
6 uid = qid/rid,id;
7 for k = 0→ id do
8 rid,k = uT

idqk;
9 qk = qk − rid,kuid;

10 end

11 end

Notice that in algorithm 5 we a concept called thread id. This thread id is a number between 0 and
m − 1, and is used to separate the data that is controlled by each thread. This algorithm can be used to
implement a parallel QR factorization for solution of Ax = b.

The Modified Gram-Schmidt algorithm is a good example of extracting parallelism from an application
that appears to be inherently sequential.

6

2.3 Excercise List

These exercises are theoretical, no code should be turned in. However, you will be expected to write a
psuedocode algorithm, much like what is in the notes.

2.3.1 Parallel Matrix-Vector Product

Show how to parallalize the matrix vector product Ax, where A is an M × N matrix and x of size N .
Assume you have k threads at your disposal, where k ≤M .

2.3.2 Parallel Matrix-Matrix Product

• Show how to parallelize matrix multiplication where both matrices A and B are square of size N . Also
assume you have N threads to complete the computation. How many indices could be a parallelized
index?

Extra Credit : If you know a bit about threaded indexing, which index is the fastest for parallelization?
Recall that in C/C++ memory transactions are row-major order.

• We know that the operation count for standard matrix multiplication is O(N3). Suppose our N core
processor has a clock speed of 1.4GHz and performs floating point operations (nevermind the precision
at this time) at that speed. Estimate how long (an order of magnitude estimate) the parallel matrix
multiplication above will take. Hint : the answer will be in terms of N .

Suppose N = 10000, give an order of magnitude estimate for the speed of the parallel matrix multipli-
cation. Realize that we are not taking into account data size, or how much data the processor can use
each clock cycle. So this estimate will be faster than in reality.

7

	Introduction of Parallelism
	Types of Parallelism
	Bit-Level
	Instruction-Level

	Data-Level and Task-Level Parallism

	Parallelizing Serial Algorithms
	Example 1: Vector Addition
	Example 2: The "Modified" Gram-Schmidt Algorithm
	Excercise List
	Parallel Matrix-Vector Product
	Parallel Matrix-Matrix Product

