
AMS 148 Chapter 7: N-Body Solver and Iterative Methods for

Solving Linear Systems

Steven Reeves

Much of the material presented in this chapter comes from Chapter 31, of GPUGEMS3.

1 N-Body Simulation

An N-body simulation numerically approximates the evolution of a systme of bodies in which each body
continuously interacts with every other body. An example of an N-body system is an astrophysical simulation
in which each body represents a galaxy or an indiviual star, and the bodies interact through the gravitational
force. N-body simulation arises in many other computational science problems such as:

• Protein folding to calculate the electrostatic and van der Waals forces

• Turbulent fluid flow simulation as particles

• Global illumination in computer graphics

1.1 Method

The all-pairs method to N-body calculations is a brute-force approach that computes all pair-wise interactions
among the N bodies. It is a simple method, but not used on its own in large simulations as it is O(N2).
Generally, an all-pairs approach is used as a kernel to determine the forces in interactions of close range.
This method is combined with a faster alogrithm based on a far-field approximation of longer-range forces
– which is generally only valid for portions of the system that are separated. Faster N-body algorithms of
this type include: particle-mesh method (Hockney and Eastwood 1981), the Barnes-Hut method (Barnes
and Hut 1986), adn the fast multipole method (FMM, Greengard 1987).

The all pairs portion of the above algorithms contain the most compute instensive operation, and is
therefore the best candidate for GPU acceleration. Accelerating the all-paris compoenent will improve the
far-field calculations as well, since the balance between far-field and near body can be rebalanced to assign
more work to a faster all-pairs component.

We will focus on the all-pairs computational kernel and its implementeation using CUDA. Parallelism is
available in the all-pairs computation and will be exploited by our kernel.

1.1.1 All-Pairs N-Body Simulation

We will use gravitiational potential to illustrate the basic form of the computation in an all- pairs N-body
simulation. Given N bodies, with an initial position of xi and velocities vi, for 1 ≤ i ≤ N . The force vector
fij on body i caused by its gravitional attraction to body j is given by

fij = G
mimj

||rij ||2
rij
||rij ||

where mi and mj are the masses of bodies i and j, respectively rij = xj − xi is the vector from body i to
body j, and G is the gravitational constant. The left factor, dissolves as the bodies become distant from
each other, and the right factor gives a unit vector in the direction of the force (since gravitaional forces are
attracting).

1

The total force on body i can be expressed as

Fi =
∑
j 6=i

fij = Gmi

∑
j 6=i

mj
rij
||rij ||3

As bodies get close together, their attractive force grows without bound, since ri,j → 0. In astrophysical
simulations, collisions between bodies happen. So a softening factor ε2 > 0 is added to the denominator.
So the total force is re-written as

Fi ≈ Gmi

∑
1≤j≤N

mjrij

(||rij||2 + ε2)
3/2

With the inclusion of the softening factor the condition of summing over i 6= j is no longer necessary, as
fii = 0 whenever ε2 > 0. The softening factor models the interaction between two Plummer point masses:
masses that behave as if they were spherical galaxies (Aarseth 2003, Dyer and Ip 1993). This is desirable
for numerical integration of the system state.

To simulate the evolution of the astronomical bodies, we need the acceleration ai = Fi/mi. WE simplify
the computation of the acceleration to

ai ≈ G
∑
j

mjrij

(||rij ||2 + ε2)
3/2

With this we can solve the N-body system using the system of differential equations

ẍi = Fi

which is changed to
v̇i = Fi

ẋi = vi

To numerically integrate this system we will use the leapfrog integration scheme (Verlet 1967). The
leapfrog scheme uses a ”half-step” in time to attain 2nd order accuracy. We can write the algorithm as so:

v
n+1/2
i = vn

i + an
i

δt

2

xn+1
i = xn

i + v
n+1/2
i δt

vn+1
i = v

n+1/2
i + an+1

i

δt

2

where an
i = miF(xn

i). This technique is often used in Gravity simulations since the acceleration is only a
function of position. The computational complexity of this operation is O(N).

1.2 CUDA Implementation of the All-Pairs N-Body Algorithm

We can implement the all-pairs algoirthm as calculating each entry of fij in an N ×N grid for all pair-wise
forces. Then the total force Fi on body i, can be calculated by performing a reduction over the j entries.
Each entry can be computed indep endently, so there is O(N2) parallelism. However, this approach also
requires O(N2) memeory operations, and would be substantially limited by bandwidth. Instread, some
operations are serialized to achieve some data reuse for memory bandwidth.

Like in our matrix multiplication example we will decompose our problem into tiles. Each tile will be a
square region containing p× p elements. Only 2p body descriptions are actually required to evaluate all p2

interactions in the tile (due to symmetry). This will allow us to store these descriptions in shared memory
or in thread local registers. The total effect of the interactions in the tile on the p bodies is captured as an
udate to p acceleration vectors.

To reuse data, we arrange the computation of a tile so that the interations in each row are evaluated in a
squential order, updating the acceleration vector, while the separate rows are done simulataneously. Using

2

this method, we avoid computing all pair-wise forces, storing them just to reduce them. Figure 1 illustrates
a schematic figure for our computaitonal tiles.

Figure 1: Computational Tile in N -Body solver. GPUGEMS Ch 31

1.2.1 Body to Body Force Calculation

The interaction between two bodies previously described, is implemented in an entirely serial fashion. We
will compute the force on body i from its interaction with body j and update the acceleration ai of the body
i as a result of this interation. There will be 20 floating-point operations in this code snippet, counting the
additions, multiplications, a call to sqrtt(), and a division (for the reciprocal).

Listing 1: Updating Acceleration of One Body as a result of its interaction with another
__device__ void bodyBodyInteraction(float4 bi, float4 bj, float3 &ai)
{

float3 r;
// r_ij
r.x = bj.x - bi.x;
r.y = bj.y - bi.y;
r.z = bj.z - bi.z;
// distSqr = dot(r_ij , r_ij) + EPS^2
float distSqr = r.x * r.x + r.y * r.y + r.z * r.z + EPS2;

// invDistCube =1/ distSqr ^(3/2)
float distSixth = distSqr * distSqr * distSqr;

float invDistCube = 1.0f/sqrtf(distSixth);
// s = m_j * invDistCube
float s = bj.w * invDistCube;

// a_i = a_i + s * r_ij
ai.x += r.x * s;
ai.y += r.y * s;
ai.z += r.z * s;

}

We use CUDA’s float4 data type for the body descritions and accelerations stored on the GPU. We store
each body’s mass w field of the body’s float4 position. Using a float4 (instead of float3) for the bodies
also allows better coalesced memory access to the arrays stored in device memeory, resulting in more efficient
memory transactions. Three-dimensional vectors stored in local variables are stored as float3 variables as
register space is an issue while coalescing memory is not.

1.2.2 Calculating Tiles

A tile is processed by p threads performaning a SIMD operation (single instruction multiple data). Each
thread will update the acceleration of one body as a result of the interaction with p other bodies. We load
p point descriptions, from device memeory into the shared memeory provided to each thread block. Then
each thread block evaluates p successive interactions. The result of each tile computation will be p updates
accelerations.

The CUDA Code for the tile computation is shown below. The input parameter myPostiion holds the
information of the body for the executing thread, and the array shPosition is an array of body descriptions,
held in shared memory. Remember that p threads execute the function body in parallel, and every thread
iterates over the same p bodies, thus computing the accelerations of its individual body as a result of p
interations.

3

Listing 2: Interations in a p× p Tile
__device__ void tile_calculation(float4 myPosition , float4 *shPosition , float3 &accel)
{

int i;
for (i = 0; i < blockDim.x; i++) {

bodyBodyInteraction(myPosition , shPosition[i], accel);
}

}

The architecture supports concurrent reads from multiple threads to a single shared memeory address,
so there will be no shared memory bank conflictions during the interaction evaluation. See the CUDA
Programming Guide for more details.

1.2.3 Clustering Tiles into Thread Blocks

We will have a thread block containing p threads to execute a number of tiles in sequence. Tiles will be
sized to balance parallelism with data reuse. This degree of parallelism (that is, the number of rows) will
be sufficiently large so that multiple warps can be interleaved to hide latencies in the body interaction
calculation. The ammount of data reuse grows with the number of columns, and this parameter also governs
the size of the transfer of bodies from global memory into shared memory. Note that the size of the tile also
determines the register space and shared memory required. We will use square tiles of size p × p. Before
computing each tile, each thread moves one body into shared memory. Thus each tile starts with p successive
bodies in shared memory.

Figure 2 illustrates a thread block that is executing multple tiles in series. Execution time extends on the
horizontal axis, while parallelism spans the vertical. Bolded lines denote the tiles on computation, showing
where shared memeory is loaded and a barrier synchronization is performed. In each thread lock, there are
N/p tiles, with p threads computing the forces on p bodies. Each thread will compute all N interactions for
one body.

Figure 2: Computation of the tiles as time goes on. GPUGEMS3 CH 31

We write our function calculate forces() to take parameters d X and d A, positions and accelerations
of the bodies. The loop over the tiles requires two synchronization points. The first synchronization ensured
that all shared memeory locations are populated before the gravitional simulation preceeds. The second
barrier ensures that all threads are completed with the tile computation before advancing to the next tile.
Without the last synchronization, threads that finish their part in the tile calculation may overwrite the
shared memeory still being used by other threads.

Listing 3: Kernel to calculate acceleration via tiles
__device__ void calculate_forces(float4 *d_X , float3 *d_A)
{

4

__shared__ float4 shPosition[BLOCK_SIZE];
float4 myPosition;
int i, tile;
float3 acc = {0.0f, 0.0f, 0.0f};
int gtid = blockIdx.x * blockDim.x + threadIdx.x;
myPosition = d_X[gtid];
for (i = 0, tile = 0; i < N; i += BLOCK_SIZE , tile ++)
{

int idx = tile * blockDim.x + threadIdx.x;
shPosition[threadIdx.x] = d_X[idx];
__syncthreads ();
tile_calculation(myPosition , shPosition ,acc);
__syncthreads ();

}
// Save the result in global memory for the integration step.
d_A[gtid] = acc;

}

1.2.4 Defining the Grid of Blocks

The kernel in the above listing calculates the acceleration of p bodies in a system. We will launch this kernel
with a one dimensional grid of size N/p in order to calculate the acceleration of all points. We can visualize
this process:

Figure 3: Visual representation of the all-pairs acceleration. GPUGEMS3 CH31

1.3 Implementation of Leapfrog Integration

We have created the means for the force calculation, now we can apply this to our numerical integration
scheme. We can reconfigure our numerical scheme to only do two updates

xn+1
i = xn

i + vn
i δ +

1

2
an
i δt

2

5

vn+1
i = vn

i +
1

2

(
an
i + an+1

i

)
δt

This will be our plan for numerical integration

1. Calculate acceleration for xn
i

2. Use vn
i and an

i to calculate xn+1
i

3. Save the old acceleration values and calculate the acceleration for xn+1
i

4. Calculate the velocities for n+ 1

We will output solutions much like we did in the heat equation example. Lets write functions to follow
each step.

Listing 4: Calculate xn+1
i

__device__ void pos_advance(float4 &X, const float3 V, const float3 A, float dt)
{

//this is called by each thread
X.x = X.x + V.x*dt + 0.5f*A.x*dt*dt;
X.y = X.y + V.y*dt + 0.5f*A.y*dt*dt;
X.z = X.z + V.z*dt + 0.5f*A.z*dt*dt;
X.w = X.w; //Mass stays the same

}

Listing 5: Calculate vn+1
i

__device__ void vel_advance(float3 &V, const float3 A1, const float3 A2 , float dt)
{

//this is called by each thread
V.x = V.x + 0.5f*(A1.x + A2.z)*dt;
V.y = V.y + 0.5f*(A1.y + A2.y)*dt;
V.z = V.z + 0.5f*(A1.z + A2.z)*dt;

}

Now that we’ve written these two functions we can write a kernel to apply one leapfrog step.

Listing 6: Kernel for Leapfrog Stage
__global__ void leapfrog(float4 *X, float3 *V, float3 *A, float dt , int k)
{

if(k==0){ // Initial acceleration.
calculate_forces(X,A);
__syncthreads ();

}
gid = threadIdx.x + blockIdx.x*blockDim.x;
float3 temp;
//Store acceleration from x^n
temp = A[gid];
__syncthreads ();

// Calculate x^n+1
pos_advance(X[gid], V[gid], A[gid], dt);
__syncthreads ();

// Calculate acceleration at the n+1 stage
calculate_forces(X,A);
__syncthreads ();

// Calculate v^n+1
vel_advance(V[gid], temp , A[gid], dt);

}

This kernel computes one update step for the system. We will use a host function to control the stages
for N -body simulation.

Listing 7: Function Controlling N-body Simulation
void nbody(float4 *X, float dt, int tio , float tend , const int N)
//X are the positions , dt = time step , tio = io iter , tend = end simulation time , N= #of bodies
{

float4 *d_X;
float3 *d_A , *d_V;
float t = 0.0f;

6

int k = 0;
cudaMalloc ((void **)&d_X , N*sizeof(float4));
cudaMalloc ((void **)&d_V , N*sizeof(float3));
cudaMalloc ((void **)&d_A , N*sizeof(float3));

cudaMemcpy(d_X ,X, N*sizeof(float4), cudaMemcpyHostToDevice);
dim3 dimGrid(N/BLOCK_SIZE);
dim3 dimBlock(BLOCK_SIZE);
while(t<tmax)
{

leapfrog <<<dimGrid ,dimBlock >>>(d_X ,d_V , d_A , dt, k);
if(k%tio ==0)
{

//IO FUNCTION
}
t+=dt;
k++;

}
if(k%tio !=0.0f)
{

IO function
}
cudaFree(d_X);
cudaFree(d_A);
cudaFree(d_V);

}

The next figure illustrates the solution of a N = 2048 system of bodies, two bodies are 200 times more
massive than the rest, we see them pull apart the smaller bodies, until they pull each other twards the center.

Figure 4: Nbody solution for 2048 bodies, at times t = 0, 0.3, 0.75, 1

7

2 Iterative Methods for Solving Linear Systems

Solving Linear Systems is a corner-stone of many scientific and computing applications. Many direct methods,
like Gaussian-Elimination, LU-decomposition are possible on GPU, however, iterative methods are more
natural for the GPU’s architecture. Additionally, the standard complexity for direct solvers are of the order
of N3, where N is the size of the matrix. Iterative methods can be faster, and have a complexity of O(MN2)
where M is the steps to convergence.

We will consider two algorithms to compute

Ax = b

for a square matrix of size N .

2.1 Gauss-Jacobi Algorithm

We first write
A = D + R

where D is a diagonal matrix containing the diagonal elements of A, and R is the rest. Using this we derive

Ax = (D + R) x = b =⇒ Dx = b−Rx =⇒ x = D−1 (b−Rx)

The inverse of a diagonal matrix is simply a diagonal matrix the reciprocal of the originals elements. Using
this derivation we prescribe an iterative method for sourcing the solution x.

xn+1 = D−1 (b−Rxn)

This form suggests a matrix multiplication of D−1, which is inefficient, instead, we can write a elementwise
formulation of this

xn+1
i =

1

aii

bi − N∑
j=1

rijx
k
j

If the algorithm converges in a number of steps M � N then we can solve Ax = b in O(MN2) steps

instead of O(N3) steps, and each newly updated element is data independent of each other. The reason
why the if is bolded, is that not all matrices will garauntee a convergence to the real solution. There is a
great depth of theory into which matrices will converge, but as a rule of thumb matrices that are diagonally
dominant. More technically, the Gauss-Jacobi method will converge if ρ(D−1R) < 1, that is, if the |λ1| < 1.
These types of matrices are very common in numerical partial differential equations. In addition, the matrix
A is usually banded, so calculating Rx can be O(N) instead of O(N2).

Algorithm 1: Psuedocode for Gauss-Jacobi

Data: A = D + R,x
1 while ||r|| > ε do
2 y = D−1 (b−Rx);
3 r = y − x;
4 x = y;

A serial implementation of the Gauss-Jacobi method will give us insight on it’s parallelization:

Listing 8: Gauss-Jacobi for serials
void cpu_gauss_jacobi(Matrix A, float *x, float *b, float eps)
{

float res = 1.0f;
float summ1 , summ2;
float *temp;
temp = (float*) malloc(sizeof(x));
while(res > eps)
{

for(int i = 0; i < A.width; i++)
{

8

summ1 = 0.0f;
summ2 = 0.0f;
for(int k = 0; k < A.width; k++)
{

summ1+=A.elements[i+k*A.width]*x[k];
}
temp[i] = 1/A.elements[i+i*A.width]*(b[i] - summ1];
summ2 += temp[i] - x[i];

}
res = abs(summ2);
for(int i = 0; i < A.width; i++)

x[i] = temp[i];
}

}

The serial implementation further illustrates that the outer loop shall correspond to the threaded index of
our GPU. From this we will create a kernel that performs one iteration of Gauss-Jacobi.

Listing 9: First Try Parallel Gauss Jacobi
__global__ void naive_gj(Matrix A, float *x, float* xout , float *b, float eps)

gid = threadIdx.x + blockIdx.x*blockDim.x;
float res = 1.0f;
float summ1 = 0.0f;
float temp;
for(int k =0; k< A.width; k++)
{

summ1 += A.elements[gid + k*A.width]*x[k];
}
temp = 1/A.elements[gid + gid*A.wdith]*(b[gid] - summ1);
xout[gid] = temp;

}

Here’s our plan for the parallel Gauss-Jocabi

1. Compute xn+1

2. Calcute r = |xn+1 − xn|

3. Reduce r to find the norm of the residual

We can do this by the host function:

Listing 10: Host function to execute Gauss Jacobi plan
void par_gj(Matrix A, float *x, float *b, float eps)
{

float res = 1.0f;
int counter = 0;
Matrix d_A;
d_A.width = A.width;
d_A.height = A.height;
float *d_x , *d_b , *d_xnew;
cudaMalloc ((void **)&d_A.elements , A.width*A.height*sizeof(float));
cudaMalloc ((void **)&d_x , A.width*sizeof(float));
cudaMalloc ((void **)&d_b , A.height*sizeof(float));
cudaMalloc ((void **)&d_xnew , A.width*sizeof(float));

cudaMemcpy(d_A.elements ,A.elements ,A.width*A.height*sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(d_x , x, A.width*sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(d_b , b, A.height*sizeof(float),cudaMemcpyHostToDevice);

dim3 dimBlock (16);
dim3 dimGrid(A.width/dimBlock.x);
while(res >eps)
{

// Compute x^{n+1}
naive_gj <<<dimGrid ,dimBlock >>>(d_A , d_x , d_xnew , d_b , eps);
cudaDeviceSynchronize ();

// Compute vector of residuals
compute_r <<<dimGrid ,dimBlock >>>(d_x ,d_xnew); //Store r in d_x
cudaDeviceSynchronize ();

// Reduce vector of residuals to find norm
reduce_r <<<dimGrid ,dimBlock >>>(d_x);
cudaMemcpy(res , d_x , sizeof(float), cudaMemcpyDeviceToHost);

9

//X = Xnew
fill <<<dimGrid ,dimBlock >>>(d_x , d_xnew);
cudaDeviceSynchronize ();
counter ++;
if(counter >A.width)

return;
}
// export X
cudaMemcpy(x, d_x , A.width*sizeof(float), cudaMemcpyDeviceToHost);
cudaFree(d_x);
cudaFree(d_A.elements);
cudaFree(d_xnew);
cudaFree(d_b);

}

In order to execute this plan, we need to write compute r, reduce r, fill. Fill is a very simple kernel,
loading the values of d x from d xnew, and will be left to the reader. We will display compute r, and
reduce r can be derived from the chapter on reduction and scan.

Listing 11: Computer the residual vector
__global__ void compute_r(d_x ,d_xnew)
{

int gid = threadIdx.x + blockDim.x*blockIdx.x;
float temp;
temp = abs(d_xnew[gid]-d_x[gid]);
d_x[gid] = temp;

}

2.2 Gradient Descent

An interesting non-trivial interpretation of the linear system

Ax = b

when A is a real, positive definite symmetric matrix, is that the solution is also the solution of a minimization
problem for a quadratic form

f(x) =
1

2
xTAx− xTb

To solve this system we calculate the derivative of the function with respect to x,

∇f =
df

dx
= Ax− b = 0.

This illustrates that the solution to the optimization problem is the solution to the linear system.
The Gradient Descent algorithm is an algorithm that has arised from numerical optimization. This

approach updates a test vector x by applying the gradient of the system. Minimizing f along a particular
direction can be done analytically for this quadratic form. Suppose the selected direction vector at step n is
pn, starting from the vector xn. Then we know that the next iteration is

xn+1 = xn + αnpn.

The key to minimizing the quadratic form is to choose the scalar αk correctly. Since

f(xn+1) =
1

2
xn+1Axn+1 − xn+1,Tb

=
1

2
(xn + αnpn)

T
A (xn + αnpn)− (xn + αnpn)

T
b

=
1

2
xn,TAxn − xn,Tb

+
αk

2

(
pn,TAxn + xn,TApn

)
+
α2
k

2
pn,TApn − αkpn,Tb

10

differentiating this statement by αk and setting to 0 we find that

αk =
pn,T rn

pn,TApn

where rn = b−Axn. This is general for any descent algorithm, for gradient descent, we choose

pn = −∇f(xn) = − (Axn − b) = rn.

So as per an algorithm, we can write:

Algorithm 2: Gradient Descent for the solution of Ax = b

Data: A,x,b
1 r = b;
2 while ||r|| > ε do
3 p = r;

4 α = pT r
pTAp

;

5 x = x + αp;
6 r = b−Ax;

Each stage of the gradient descent algorithm requires a matrix-vector multiplication, and is therefore will
be order O(MN2), much like the Gauss-Jacobi algoirthm, where M is the number of steps to convergence.

In order to realize this algorithm let’s form a plan:

1. Compute α

2. Update solution vector

3. Compute gradient for residual and next iteration

In the algorithm, p is always equal to r, so in our actual computation, we will omit it to save memory.
Our first order of business is to compute alpha. This will require a couple of steps.

1. Dot product between p and r

2. Then the dot product between p and Ap

3. Division of 1 by 2.

To compute a dot product on GPU, we’ll employ two operation, a pair-wise multiplication between p and r,
then a reduction of the result. The denominator requires a matrix vector multiplication, and then the dot
product described in the numerator.

The algorithm then requires a vector addition, and finally another matrix vector product followed by a
vector addition. Therefore we can construct the algorithm based mostly on algorithms we already have.

Listing 12: Host Function for Gradient Descent
void grad_descnt(Matrix A, float *x , float *b, float eps)
{

float *r, *d_b , *d_x , *temp1 , *temp2;
float *alpha , res = 1.0f;
int counter = 0;
Matrix d_A;
dim3 dimBlock (16);
dim3 dimGrid(A.width/dimBlock.x);

cudaMalloc (&r, A.width*sizeof(float));
cudaMalloc (&d_b , A.width*sizeof(float));
cudaMalloc (&d_x , A.width*sizeof(float));
cudaMalloc (&d_A.elements , A.width*A.height*sizeof(float));
cudaMalloc (&alpha , sizeof(float));
cudaMalloc (&temp1 , A.width*sizeof(float));
cudaMalloc (&temp2 , A.width*sizeof(float));

cudaMemcpy(d_b , b, A.width*sizeof(float), cudaMemcpyHostToDevice);

11

cudaMemcpy(d_x , x, A.width*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_A.elements , A.elements , A.width*A.height*sizeof(float), cudaMemcpyHostToDevice);

while(res > eps)
{

// Calculate Alpha
pairwise_mult <<<dimGrid , dimBlock >>>(r, r, temp1);
cudaDeviceSynchronize ();
reduce_sum <<<dimGrid , dimBlock >>>(temp1 , temp1);
cudaDeviceSynchronize ();
Matvecmult <<<dimGrid , dimBlock >>>(d_A ,r,temp2);
cudaDeviceSynchronize ();
pairwise_mult <<<dimGrid , dimBlock >>>(r, temp2 , temp2);
cudaDeviceSynchronize ();
reduce_sum <<<dimGrid , dimBlock >>>(temp2 ,temp2);
cudaDeviceSynchronize ();
devide <<<1,1>>>(alpha ,temp1 ,temp2);

// X = X + alpha P
saxpy <<<dimGrid , dimBlock >>>(d_x , r, alpha);
cudaDeviceSynchronize ();

// Calculate new r
Matvecmult <<<dimGrid , dimBlock >>>(d_A , x, temp1);
cudaDeviceSynchronize ();
saxpy2 <<<dimGrid , dimBlock >>>(r, b, temp1 , -1);

// Calculate norm
vec_abs <<<dimGrid , dimBlock >>>(temp1 , r)
reduce_sum <<<dimGrid , dimBlock >>>(temp1 , temp1);
cudaMemcpy(res , temp1 , sizeof(float), cudaMemcpyDeviceToHost);
counter ++;
if(counter >1e6)

return;
}
cudaMemcpy(x,d_x ,A.width*sizeof(float), cudaMemcpyDeviceToHost);
cudaFree(d_x);
cudaFree(d_A.elements);
cudaFree(r);
cudaFree(d_b);
cudaFree(temp1);
cudaFree(temp2);
cudaFree(alpha);

}

We have done most of the required kernels in previous assignments, and chapters. New ones would be
the pairwise multiplication and vector absolute-value, both very simple kernels that the reader is invited to
construct.

2.3 Heat Equation Revisited

The heat equation is what is known as a parabolic differential equation. Generally, the type of explicit
numerical solution scheme that we illustrated before is not the ideal type of numerical solver for these type
of equations. A better type of numerical differential equation scheme is an implicit scheme for parabolic
equations.

We will consider the Backward Time, Centered Space Method (BTCS). Much like the FTCS
method invistigated on the chapter on stencil algorithms, BTCS will also rely on a numerical stencil. The
difference between FTCS and BTCS, is that the spatial derivative is taken at the n + 1 time step. So the
recurrence relation is

un+1
j − unj
δt

= κ
un+1
j+1 − 2un+1

j + un+1
j

δx2

Here we obtain
(1 + 2r)un+1

j − run+1
j+1 − ru

n+1
j−1 = unj

where r = κ
∆t

∆x2
This forms a linear system for the solution at un+1

Aun+1 = un

12

where

A =

1 + 2r −r 0 · · · 0
−r 1 + 2r −r · · · 0
0 −r 1 + 2r · · · 0
...

. . .
. . .

. . .
...

So we need to solve a linear system of a size Nx. This is will be the point for our iterative solvers. The
advantage of implicit schemes, is that they are always numerically stable, that is theoretically, we can choose
any δt that we wish. However, the accuracy of the scheme is O(δt), so we still must be conservative.

We can augment our kernels to take advantage of the tridiagonal matrix.

2.3.1 Modified Gauss-Jacobi

Note that the system is diagonally dominant, so the Gauss-Jocabi algorithm will converge. Here’s our new
kernel:

Listing 13: Tridiagonal GJ
__global__ void tridiag_gj(float *diag , float *subdiag , float *supdiag , float *x, float *xout , float *b,

float eps)
{

gid = threadIdx.x + blockDimx.x*blockIdx.x;
float res = 1.0f;
float summ1 = 0.0f;
float temp;

if(gid >0 && gid < N-1)
{

summ1 = subdiag[gid]*x[gid -1] + supdiag[gid]*x[gid +1];
temp = 1/diag[gid]*(b[gid] - summ1);

}
elseif(gid ==0)
{

summ1 = supdiag[gid]*x[gid +1];
temp = 1/diag[gid]*(b[gid] - summ1);

}
else
{

summ1 = subdiag[gid]*x[gid -1];
temp = 1/diag[gid]*(b[gid] - summ1);

}
xout[gid] = temp;

}

And then this can be iterated until convergence. Conversely, if we use Gradient descent, we merely need to
write a tridiagonal matrix-vector multiplication.

Listing 14: Triadonal Matrix Vector multiplication
template <class T>
__global__ void tridiag_mat_vec(T *diag , T *subdiag , T *supdiag , T *xin , T *xout)
{

gid = threadIdx.x + blockDim.x*blockIdx.x;
if(0 < gid && gid < N-1)

xout[gid] = diag[gid]*xin[gid] + subdiag[gid]*xin[gid -1] + supdiag[gid]*xin[gid +1];
else if(gid == 0)

xout[gid] = diag[gid]*xin[gid] + supdiag[gid]*xin[gid +1];
else

xout[gid] = diag[gid]*xin[gid] + supdiag[gid]*xin[gid -1];
}

You could also create a structure to hold the tridiagonal matrix. This is the only change needed for Gradient
Descent. Lets write the routine for simulating the 1D heat equation using BCTS

Listing 15: BTCS
void BTCS(float *f, float dt, float dx, float kappa , float tend , int tio)
{

float r = kappa*dt/(dx*dx);
float *sub;
float *diag;
float *sup;
float *d_f , *d_f1;

13

float t = 0.0f;
int k = 0;
float eps = 1e-3;
std:: string f2;
size_t sz = N*sizeof(float);
cudaMalloc ((void **)&sub , sz);
cudaMalloc ((void **)&diag , sz);
cudaMalloc ((void **)&sup , sz);
cudaMalloc ((void **)&d_f , sz);
cudaMalloc ((void **)&d_f1 , sz);
cudaMemcpy(d_f , f, sz , cudaMemcpyHostToDevice);
cudaMemcpy(d_f1 , f, sz, cudaMemcpyHostToDevice);

dim3 dimBlock(BLOCK_SIZE);
dim3 dimGrid(N/BLOCK_SIZE);

create_tridiag <<<dimGrid ,dimBlock >>>(diag , sub , sup , r); // creates tridiag for BTCS
while(t<tend)
{

tridiag_par_gj(diag , sub , sup , d_f1 , d_f , eps); // Calculate new value!
// or
// tridiag_grad_descent(args);

fill <<<dimGrid ,dimBlock >>>(d_f , d_f1); //u^n+1
if(k%tio ==0)
{

f2 = "sol" + std:: to_string(k) + ".dat";
cudaMemcpy(f,d_f , sz, cudaMemcpyDeviceToHost);
io_fun(f2, f);

}

t+=dt;
k++;

}
if(k%tio !=0)
{

f2 = "final_sol.dat";
cudaMemcpy(f,d_f , sz, cudaMemcpyDeviceToHost);
io_fun(f2, f);

}

cudaFree(sub);
cudaFree(sup);
cudaFree(diag);
cudaFree(d_f);
cudaFree(d_f1);

}

Using this prescription we can get the following solution in the fraction of the steps.

14

	N-Body Simulation
	Method
	All-Pairs N-Body Simulation

	CUDA Implementation of the All-Pairs N-Body Algorithm
	Body to Body Force Calculation
	Calculating Tiles
	Clustering Tiles into Thread Blocks
	Defining the Grid of Blocks

	Implementation of Leapfrog Integration

	Iterative Methods for Solving Linear Systems
	Gauss-Jacobi Algorithm
	Gradient Descent
	Heat Equation Revisited
	Modified Gauss-Jacobi

