
AMS 148 Chapter 8: Optimization in CUDA, and Advanced Topics

Steven Reeves

1 Optimizing Data Transfers in CUDA C/C++

This section we will discuss code optimization with how to efficiently transfer data between the host and the
device. The peak bandwidth between the device memory and the GPU is much higher (720 GB/s for the
Tesla P100 found in Hummingbird) than the peak bandwidth between host memory and device memory (8
GB/s on a PCIex16 Generation 2). This disparity means that if your implementation requires many data
transfers from GPU to host or vice-versa it will greatly halter your performance. Let us begin with a few
general guidlines for host-device data transfers. We wish to:

• Minimize the ammount of data transferred between host and device when possible, even if that means
running kernels on the GPU that get little or no speed-up compared to running them on the host CPU.

• Hihger bandwidth is possible between the host and the device when using page-locked (or ’pinned’)
memory.

• Batching many small transfers into one larger transfer performs better as it eliminates most of the
per-transfer overhead.

• Data transfers between the host and device can sometimes be overlapped with kernel execution and
other data transfers.

First let us talk about how to measure time spent in data transfers without modifying source code.

1.1 Measuring Data Transfers Times with nvprof

To measure the time spent during each data transfer, we could record a CUDA event before and after each
transfer and use cudaEventElaspsedTime() as we have in the past. However, we can retrieve the elapsed
transfer time without deploying CUDA events by using nvprof, a command-line CUDA profiler included
with the CUDA Toolkit. Let’s try the following code example:

Listing 1: Example Code for Profiling
int main()
{

const unsigned int N = 1048576;
const unsigned int bytes = N*sizeof(int);
int *h_a = (int*) malloc(bytes);
int *d_a;
cudaMalloc ((int**)&d_a , bytes);

memset(h_a , 0, bytes);
cudaMemcpy(d_a , h_a , bytes , cudaMemcpyHostToDevice);
cudaMemcpy(h_a , d_a , bytes , cudaMemcpyDeviceToHost);

return 0;
}

To profile this code, we just need to compile it using nvcc, and the run nvprof with the program fileneame
as an argument.

Listing 2: Running nvprof
$ nvcc profile.cu -o profile.exe
$ nvprof ./ profile.exe

1

Using the Citrisdance (NVIDIA K20) server I recieve the following output:

==17821== NVPROF is profiling process 17821, command: ./ profile.exe
==17821== Profiling application: ./ profile.exe
==17821== Profiling result:

Type Time (%) Time Calls Avg Min Max Name
GPU activities: 51.35% 1.5589 ms 1 1.5589 ms 1.5589 ms 1.5589 ms [CUDA memcpy DtoH]

48.65% 1.4772 ms 1 1.4772 ms 1.4772 ms 1.4772 ms [CUDA memcpy HtoD]
API calls: 98.80% 480.32 ms 1 480.32 ms 480.32 ms 480.32 ms cudaMalloc

0.93% 4.5109 ms 2 2.2554 ms 1.7877 ms 2.7232 ms cudaMemcpy
0.21% 1.0257 ms 188 5.4550 us 220ns 205.44 us cuDeviceGetAttribute
0.04% 197.15 us 2 98.574 us 66.692 us 130.46 us cuDeviceTotalMem
0.02% 93.452 us 2 46.726 us 44.398 us 49.054 us cuDeviceGetName
0.00% 6.8620 us 4 1.7150 us 342ns 5.2240 us cuDeviceGet
0.00% 3.6260 us 3 1.2080 us 347ns 2.4570 us cuDeviceGetCount

We see that nvprof gives a full breakdown of the program, including the CUDA API calls and the GPU
activities. We see that the majority of the time is used on the memory allocation, but barring this API call,
the next most time consuming are the memory transfers. Memory transfers are much more common than
allocation in most applications.

1.2 Minimizing Data Transfers

We should not use only the GPU exectuation time of a kernel relative to CPU functions to decided whether
to run the GPU or CPU version. We also need to consider the cost of moving data across the PCI-e bus,
especially when we are initially porting code to CUDA. Because of the hetrogenous programming model of
CUDA (using both the CPU and GPU), code can be ported to the GPU one kernel at a time. In the initial
stages of writing CUDA code, data transfers may donimate the overall execution time. It is worth while to
monitor time spent on data transfer separately from time spent during computation within a kernel. It is
easy to use the command-line profiler for this, as demonstrated above. As more of our code is ported to
CUDA, we will remove intermediate transfers and descrease the overall execution time correspondingly.

1.3 Pinned Memory

Pageable memory space means memory contents that can be paged in/ paged out between DRAM and a
secondary storage device. Host memory allocations are generally pageable.

The main motivation for using pinned memory is to perform asynchronous transfers of data from the host
to the device. This is accomplished by using the CUDA primitive cudaMemcpyAsync and related functions.
Additionally, certain performance benefits come from using pinned (or page-locked memory). In this section
we will give a few examples about how to allocate pinned memory and we investigate features of this type
of memory.

1.3.1 About pinned memory

The workings of paged memory is best described by the post on http://devblogs.nvidia.com which will be
paraphrased here.

Data allocations on the CPU are pageable by default. The GPU cannot access data directly from pageable
host memory, so when a data transfer from pageable host memory to device is invoked, the CUDA driver
will first allocate a temporary page-locked, or ”pinned” host array. Then the data is copied into this pinned
array for transfer to the device. An illustration of this process is provided by Nvidia blogpost:

2

Figure 1: Regular Data Transfer vs Pinned Data Transfer; NVIDIA Developer Blog

As shown in figure 1, pinned memory is used as a staging area for transfers from the device to the hsot.
We can avoid the cost of the transfer betweeen pageable and pinned host arrays by directly allocation the
host arrays in pinned memory. Allocate pinned host memory in CUDA C/C++ using cudaMallocHost() or
cudaHostAlloc() and free the memory with cudaFreeHost(). It is possible for pinned memory allocation
to fail, so we should check for errors using the cudaError t class. The following code demonstrates allocation
of pinned memory with error chekcing.

cudaError_t status = cudaMallocHost ((void **)&h_aPinned , bytes);
if (status != cudaSuccess)

printf("Error allocating pinned host memory\n");

Data transfers using host pinned memory use the same cudaMemcpy() syntax as transfers with pageable
memory. We can use the following ”bandwidthtest” program to compare the rates between pagable and
pinned transfer rates.

Listing 3: Bandwidth Test
#include <stdio.h>
#include <assert.h>

// Convenience function for hcekcing CUDA runtime API results
// can be wrapped around any runtime API call. No -op in release builds.
inline
cudaError_t checkCuda(cudaError_t result)
{
#if deifned(DEBUG) || defined(_DEBUG)

if(result != cudaSuccess) {
fprintf(stderr , "CUDA Runtime Error: %s\n",

cudaGetErrorString(result));
assert(result == cudaSuccess);

}
#endif

return result;
}

void profileCopies(float *h_a ,
float *h_b ,
float *d,
unsigned int n,
char *desc)

{
printf("\n%s transfers\n", desc);

unsigned int bytes = n * sizeof(float);

// events for timing
cudaEvent_t startEvent , stopEvent;

checkCuda(cudaEventCreate (& startEvent));
checkCuda(cudaEventCreate (& stopEvent));

checkCuda(cudaEventRecord(startEvent , 0));
checkCuda(cudaMemcpy(d, h_a , bytes , cudaMemcpyHostToDevice));
checkCuda(cudaEventRecord(stopEvent , 0));
checkCuda(cudaEventSynchronize(stopEvent));

3

float time;
checkCuda(cudaEventElapsedTime (&time , startEvent , stopEvent));
printf(" Host to Device bandwidth (GB/s): %f\n", bytes * 1e-6 / time);

checkCuda(cudaEventRecord(startEvent , 0));
checkCuda(cudaMemcpy(h_b , d, bytes , cudaMemcpyDeviceToHost));
checkCuda(cudaEventRecord(stopEvent , 0));
checkCuda(cudaEventSynchronize(stopEvent));

checkCuda(cudaEventElapsedTime (&time , startEvent , stopEvent));
printf(" Device to Host bandwidth (GB/s): %f\n", bytes * 1e-6 / time);

for (int i = 0; i < n; ++i) {
if (h_a[i] != h_b[i]) {

printf("*** %s transfers failed ***\n", desc);
break;

}
}

// clean up events
checkCuda(cudaEventDestroy(startEvent));
checkCuda(cudaEventDestroy(stopEvent));

}

int main()
{

unsigned int nElements = 4*1024*1024;
const unsigned int bytes = nElements * sizeof(float);

// host arrays
float *h_aPageable , *h_bPageable;
float *h_aPinned , *h_bPinned;

// device array
float *d_a;

// allocate and initialize
h_aPageable = (float*) malloc(bytes); // host pageable
h_bPageable = (float*) malloc(bytes); // host pageable
checkCuda(cudaMallocHost ((void **)&h_aPinned , bytes)); // host pinned
checkCuda(cudaMallocHost ((void **)&h_bPinned , bytes)); // host pinned
checkCuda(cudaMalloc ((void **)&d_a , bytes)); // device

for (int i = 0; i < nElements; ++i) h_aPageable[i] = i;
memcpy(h_aPinned , h_aPageable , bytes);
memset(h_bPageable , 0, bytes);
memset(h_bPinned , 0, bytes);

// output device info and transfer size
cudaDeviceProp prop;
checkCuda(cudaGetDeviceProperties (&prop , 0));

printf("\nDevice: %s\n", prop.name);
printf("Transfer size (MB): %d\n", bytes / (1024 * 1024));

// perform copies and report bandwidth
profileCopies(h_aPageable , h_bPageable , d_a , nElements , "Pageable");
profileCopies(h_aPinned , h_bPinned , d_a , nElements , "Pinned");

printf("n");

// cleanup
cudaFree(d_a);
cudaFreeHost(h_aPinned);
cudaFreeHost(h_bPinned);
free(h_aPageable);
free(h_bPageable);

return 0;
}

The data transfer rate can depend on the type of host stysem (motherboard, CPU, and chipset) as well
as the GPU. Running this program on HummingBird we have the following output

Listing 4: Output of Bandwidth Test
Device: Tesla P100 -PCIE -16GB
Transfer size (MB): 16

4

Pageable transfers
Host to Device bandwidth (GB/s): 2.990821
Device to Host bandwidth (GB/s): 4.364375

Pinned transfers
Host to Device bandwidth (GB/s): 12.017788
Device to Host bandwidth (GB/s): 12.726673

On Hummingbird the CPU is an AMD Opteron processor and sets a decent pageable transfer rate.
However, we find that the pinned transfer rate is much more impressive, offering more than 4 times bandwidth
Host to Device and 3 times bandwidth Device to Host. Note that the pageable transfer rate depends on the
speed of the CPU. Faster CPUs will offer a better pageable bandwidths, however with modern GPUs pinned
bandwidths will exceed this capability.

A word of warning, you should not over-allocate pinned memory. Doing so can reduce overall system
performance because it reduces the amount of physical memory available to the operating system and other
programs. How much is too much is difficult to tell a priory, so as with most optimizaitons, test your code
and the systems they run on for optimal performance parameters.

1.3.2 Batching Small Transfers

Due to the overhead associated with CPU to GPU memory transfers, it is better to batch many small
transfers together into a single transfer. This is easy to do by using a temporary array, preferable pinned,
and packing it with the data to be transferred.

2 CUDA Streams

In the previous section we discussed how to transfer data efficiently between the host and device. In this
section, we discuss how to overlap data transfers with computation on the host, computation on the device,
and other data transfers between the hsot and device. Through the use of CUDA streams, overlap between
data transfers and other operations can be achieved.

A stream in CUDA is a sequence of operations that execute on the device in the order in which they
are issued by the host code. While operations within a stream are garaunteed to execute in the prescribed
order, operations in different streams can be interleaved and, when possible, they will run concurrently.

2.1 The default stream

All device operations (kernels and data transfers) in CUDA run in a stream. When no stream is specified,
the default stream (also referred to the ”null stream”) is used. The default stream is different from other
streams as it is a synchronizing stream with respect to the device: no operation on the default stream will
begin until all previous issued operation in any stream on the device have completed, and an operation in
the default stream must complete before any other operation (in any stream on the device) will begin.

Let us check out a simple code snippet that use the default stream:

Listing 5: Code Snippet Default Stream
cudaMemcpy(d_a , a, numBytes , cudaMemcpyHostToDevice);
increment <<<1,N>>>(d_a)
cudaMemcpy(a, d_a , numBytes , cudaMemcpyDeviceToHost);

In this snippet, from the persepctive of the PGU¡ all three operation are issued to the same (default) stream
and will execute in the order that they were issued.

From the perspective of the CPU, the implicit data transfers are blocking or synchronous transfers, while
kernel launching is asynchronous. Since the host-to-device transfer on the first line is synchronous, the CPU
thread will not reach the kernel call on the second line until the host to device transfer is complete. Once
the kernel is issued, the CPU thread moves to the third line, but the transfer on that line will not begin due
to the device-side order of execution.

The asynchronous behavior of the kernel launches from the CPU’s perspective makes overlapping device
and host computations very easy, take the following snippet for example:

5

cudaMemcpy(d_a , a, numBytes , cudaMemcpyHostToDevice);
increment <<<1,N>>>(d_a)
myCpuFunction(b)
cudaMemcpy(a, d_a , numBytes , cudaMemcpyDeviceToHost);

In this code, as soon as the kernel is launched on the device the CPU thread executes myCpuFunction(),
overlapping the CPU function with the kernel execution on the GPU. Whether the host function or device
kernel completes first doesn’t afftect the subsequent device to host memory transfer, which begins only after
the kernel is completed. From the perspective of the GPU, nothign has changed from the previous example;
the device is completely unaware of myCpuFunction().

2.2 Non-default streams

Streams other than the null CUDA C/C++ are declared, created, and destroyed in the host code, as in this
example:

Listing 6: Streams
cudaStream_t stream1;
cudaError_t result;
result = cudaStreamCreate (& stream1);
result = cudaStreamDestroy (& stream1);

In order to issue a data transfer to a non default CUDA stream, we use the cudaMemcpyAsync() function,
which is similar to the regular cudaMemcpy() function we have been using before, but it takes another
argument.

result = cudaMemcpyAsyn(d_a , a, N, cudaMemcpyHostToDevice , stream1);

This function is asynchronous with the host, so control returns to the host thread immediately after the
transfer is issued. There are 2D and 3D extensions of this as well. To issue a kernel to a non-default stream,
we specify the stream in question as a fourth argument in the kernel configuration:

increment <<<1,N,0,stream1 >>>(d_a);

2.3 Synchronization with streams

Since all operations in non-default streams are asynchronous with respect to the host code, you will find
that there may be situations that will require you to synchronize all streams. There are several ways to do
this. The brute force way to do this is to utilize cudaDeviceSynchronize() which creates a barrier on the
host thread until all previously issued GPU operations are complete. In most cases this is too much, and
can hurt performance due to stalling the device and host thread.

The CUDA stream API has multiple less severe methods of synchronization. The function
cudaStreamSynchronize(stream) can be used to block the host from prorceeding until all previous is-
sued operations on the specified stream have completed. The function cudaStreamQuery(stream) tests
whether all operations issued to the specified stream have completed, without blocking host execution. The
fuctions cudaEventSyncrhonize(event) and cudaEventQuery(event) do the similar only that their result
is based off of whether a particular event has been recorded. You can also synchronize operations within a
single stream on a specific event using cudaStreamWaitEvent(event).

2.4 Overlapping Kernel Execution and Data Transfer

Previously we demonstrated overlapping kernel execution in the default stream with execution of operations
on the CPU. But our goal in this section is to show how to overlap kernel execution with data transfers.
There are several requirements for this to happen:

• The device must be capable of ”concurrent copy and exectuion”

• The kernel execution and the data transfer to be overlapped must both occur in different, non default
streams

• The host memory involved in the data transfer must be pinned memory.

6

So we’re going to modify the simple code from the previous section, the full code available on github. In this
modified snippet, we break up the array of size N into chunks of streamSize elements. SInce the kernel
operates independently on all elements, each of the chunks can be processed indepednently. The number of
(non-default) streams used is nStreams=N/streamSize. There are multiple ways to implement the domain
decompostion of the data and processing, one way is to loop over the operations for each chunk.

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync (&d_a[offset], &a[offset], streamBytes , cudaMemcpyHostToDevice , stream[i]);
kernel <<<streamSize/blockSize , blockSize , 0, stream[i]>>>(d_a , offset);
cudaMemcpyAsync (&a[offset], &d_a[offset], streamBytes , cudaMemcpyDeviceToHost , stream[i]);

}

Another approach is to batch similar operations together, issuing all the host to device transfers first, followed
by the kernel lauches, lastly the device to host transfers.

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync (&d_a[offset], &a[offset],

streamBytes , cudaMemcpyHostToDevice , cudaMemcpyHostToDevice , stream[i]);
}

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
kernel <<<streamSize/blockSize , blockSize , 0, stream[i]>>>(d_a , offset);

}

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync (&a[offset], &d_a[offset],

streamBytes , cudaMemcpyDeviceToHost , cudaMemcpyDeviceToHost , stream[i]);
}

Both asyncrhonous methods shown above yield the correct results, and in both cases dependent operations
are issued to the same stream in the order in which they need to be executed. The results can vary depending
on GPU architectures: On citrisdance a Kepler based server I get the following results:

Device : Tesla K20c
Time for sequential transfer and execute (ms): 7.590112

max error: 1.192093e-07
Time for asynchronous V1 transfer and execute (ms): 3.995456

max error: 1.192093e-07
Time for asynchronous V2 transfer and execute (ms): 3.975712

max error: 1.192093e-07

However, on Hummingbird the performance is faster:

Device : Tesla P100 -PCIE -16GB
Time for sequential transfer and execute (ms): 3.154144

max error: 1.192093e-07
Time for asynchronous V1 transfer and execute (ms): 1.971200

max error: 1.192093e-07
Time for asynchronous V2 transfer and execute (ms): 1.959584

max error: 1.192093e-07

This is mostly due to hardware advances in the years, but also due to changes in compute combatibility.
For devices that have compute cability 3.5 or higher, the Hyper-Q feature eliminates the need to tailor the
launch order so either approach yields similar results. However, on older devices, such as the Tesla C1060,
a compute 1.5 device the results are different.

Device : Tesla C1060

Time for sequential transfer and execute (ms): 12.92381
max error : 2.3841858E -07

Time for asynchronous V1 transfer and execute (ms): 13.63690
max error : 2.3841858E -07

Time for asynchronous V2 transfer and execute (ms): 8.84588
max error : 2.3841858E -07

We see that with this device the version one transfer runs slower than the serially transfered method. A good
way to understand this is that the C1060 only has one copy engine and one kernel engine. The following
diagram illustrates the method of operation on the C1060

7

Figure 2: Singe Engine, Nvidia Developer Blogs

whereas a newer device, say a C2050, which contains two copy engines and kernel engines, the timelines
are more like this:

8

Figure 3: Multiple Engines, Nvidia Developer Blogs

The number of engines in these previous models dictated the nature of asynchronous operations. The
Hyper-Q firmware allows for more effective use of the grid management. The following illustrations show
the profiling of an applicaiton without and with hyper-Q.

Figure 4: Profiling of older multi-engine GPUs without Hyper-Q

9

Figure 5: Multi-engine GPUs with Hyper-Q

GPUs with Hyper-Q allow the hardward to compact asynchronous launches using either method. Allow-
ing the developer to not worry (as much) about the hardware implementation.

3 Optimizing Calculations

In the previous sections we looked into to optimizing memory transactions, in this section we’ll look into
optimizing calculations within kernels. As an example we will follow Mark Harris’ Optimizing Parallel
Reduction in CUDA presentation.

Using this, we will discuss 7 different versions of the reduction kernel. Using these versions we will
look at several important optimization strategies. Utilizing these strategies we strive to reach GPU peak
performance. We will need to choose the right metric, FLOP/s for compute-bound kernels, and Bandwidth
for memory-bound kernels. Reductions have very low arithmetic intensity, 1 flop per element loaded, making
this bandwidth optimal. The following code is tested on aa Nvidia Titan XP GPU, which has a theoretical
peak bandwidth of 547.6 GB/s. In what follows we will try to design an algorithm that gets close to this
theoretical bandwidth. A true measurement is the effictive bandwdith

BWeffective = (RB + WB)/(t× 109)

where RB is the number of bytes read by the kernel, and WB is the number of bytes written. We multiply
t by 109 to retrieve GB/s.

The reduction that we have had before utilizes a method called address interleaving.

Listing 7: First Reduction
template <class T>
__global__ void reduce0(T *g_idata , T *g_odata){

extern __shared__ T sdata [];
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads ();
// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0)
{

sdata[tid] += sdata[tid + s];
}
__syncthreads ();

}
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata [0];

}

The if statement within this code is highly divergent, it branches the threads and many launched threads
are not active, and can result in very poor performance. We will test this code and the code that follows
using 1 million integers.

10

Upon execution of this first reduce, the elapsed time is 0.132096 ms, with a effective bandwidth of 31.814
GB/s. This is far from the the theoretical bandwidth. Let us change this kernel to remove the divergent
branching.

Listing 8: Reduction without divergent branching
template <class T>
__global__ void reduce1(T *d_out , const T *d_in)
{

// sdata is allocated in the kernel call: via dynamic shared memeory
extern __shared__ T sdata [];

int myId = threadIdx.x + blockDim.x*blockIdx.x;
int tid = threadIdx.x;

//load shared mem from global mem
sdata[tid] = d_in[myId];
__syncthreads (); // always sync before using sdata

//do reduction over shared memory
for(int s = 1; s<blockDim.x; s *=2)
{

int index = 2*s*tid; // Strided indexing!
if(index < blockDim.x)
{

sdata[index] += sdata[index + s];
}
__syncthreads (); //make sure all additions are finished

}

//only tid 0 writes out result!
if(tid == 0)
{

d_out[blockIdx.x] = sdata [0];
}

}

All we changed in this code was the divergent inner loop. In this case we moved to a strided indexing
scheme to create non-divergent branches. Upon execution of this kernel, we find that the elapsed time is
now 0.071264 ms with an effective bandwidth of 58.9709GB/s. This shows that we have a 1.85 times speed
up over the original. There’s an additional problem here, we have shared memory bank conflicts, induced
by the strided index.

We will change our looping scheme to yield sequential addressing, which will alleviate the shared memory
bank conflict. To do this we swap the inner loop to be the following

Listing 9: Reduce with sequential addressing
for(unsigned int s = blockDim.x/2; s>0; s >>=1)
{

if(tid < s)
{

sdata[tid] += sdata[tid+s];
}
__syncthreads (); //make sure all additions are finished

}

all else the same. By executing this kernel, we have the following reports: Elapsed time : 0.062816ms,
Effective Bandwidth : 66.9017 GB/s, yielding a 1.13× speed up from the previous kernel.

The problem with this implementation is that there are many idle threads, we only use half of the
threads in the thread block upon the first loop of the iteration. In this case, we will half the number of
blocks used, and change the way we load into shared memeory. For this purpose we will do two loads, and
do the first addition in the reduction kernel upon loading into shared memory. So, we change our kernel to
use:

Listing 10: First Add During Load
int myId = threadIdx.x + (blockDim.x*2)*blockIdx.x;
int tid = threadIdx.x;

//load shared mem from global mem
sdata[tid] = d_in[myId] + d_in[myId + blockDim.x];
__syncthreads (); // always sync before using sdata

11

Upon execution, we reduce the elapsed time to 0.034528ms and increase the bandwidth to 121.713GB/s.
Giving a speed up of 1.8192 times.

At 121GB/s we’re far from the bandwidth upper bound. Therefore there is likely a bottleneck in the
instruction overhead. Ancillary instructions that are not loads, stores, or arithmetic for core computation
can become bottlenecks. In this case, address arithmetic and loop overhead. Our strategy for mitigating
this will be to unroll loops.

In the next kernel we will unroll the last warp. That is, we will change our loop to end at s = 32. Note
that this will save useless work in every warp, since we will be taking stages out of the for loop. Without
the unroll, every warp executes all iterations of the for loop and if statement.

Listing 11: Unrolling the last warp
for(unsigned int s = blockDim.x/2; s>32; s >>=1)
{

if(tid < s)
{

sdata[tid] += sdata[tid+s];
}
__syncthreads (); //make sure all additions are finished

}
if(tid < 32)
{

sdata[tid] += sdata[tid +32];
sdata[tid] += sdata[tid +16];
sdata[tid] += sdata[tid +8];
sdata[tid] += sdata[tid +4];
sdata[tid] += sdata[tid +2];
sdata[tid] += sdata[tid +1];

}

The effects of unrolling the last warp is fairly noticable. We reduce the kernel time to 0.023936ms with
bandwidth being 175.572 GB/s, giving a speed up of 1.442513369 times from the last kernel.

Now if we know the know the number of iterations at compile time, then we could completely unroll the
reduction. Luckily, the block size is limiited by the GPU to 1024 threads, and we’re sticking to powers of
2 for blocksizes. So we can easily unroll for a fixed block size, which we will use a precompiler derictive to
define blockSize. Using this value all if statements involving blockSize will be evaulated at compile time.
Therefore we can change the above for loop to a different statment

Listing 12: Unrolling all the loops
if(blockSize >= 512){

if(tid < 256)
{

sdata[tid] += sdata[tid + 256];
}
__syncthreads ();

}
if(blockSize >= 256){

if(tid < 128)
{

sdata[tid] += sdata[tid + 128];
}
__syncthreads ();

}
if(blockSize >= 128){

if(tid < 64)
{

sdata[tid] += sdata[tid + 64];
}
__syncthreads ();

}

if(tid < 32)
{

sdata[tid] += sdata[tid +32];
sdata[tid] += sdata[tid +16];
sdata[tid] += sdata[tid +8];
sdata[tid] += sdata[tid +4];
sdata[tid] += sdata[tid +2];
sdata[tid] += sdata[tid +1];

}

12

Using this method we shave the time down 0.02192 ms, and raise the bandwidth to 191.72GB/s, yielding a
moderate speed up just about 1.1.

Before getting to the last optimization, lets consider the complexity of the reduce algorithm. We know
that there are log2(N) parallel steps, where each step S does N/2S independent operations. For N = 2D,
the reduction algorithm performs ∑

S∈[1···D]

2D−S = N − 1

operations, making is work efficient. With P threads operating in parallel, the time complexity of the reduce
is O(N/P + log2(N)). Now we need to think about cost, the cost of the parallel algorithm is the number of
processors times the time complexity. If we allocate N processors, then the cost is N log(N), which is not
cost effecient. Brent’s theorem suggests that we use O(N/ log(N))threads. Each thread will do O(log(N))
sequential work. So all O(N/ log(N)) threads will cooperatie for O(logN) steps, therefore resulting in O(N)
cost. This is called algorithm cascading, and in practice can lead to significant speed ups.

To cascade the reduction, we will combine sequential and parallel reduction methods. Each thread loads
and sums multiple elements into shared memory, then we will perform the tree based reduction in shared
memory. Brent’s theorem suggests that each thread should sum O(log(N)) elements. It can be sometimes
beneficial to push this further, we can hide latency with more work per thread. We will do this using 32
elements per thread. The changes in this last reduction are almost entirely in the load/serial reduce:

Listing 13: Algorithm Cascading
int myId = threadIdx.x + (blockDim.x*2)*blockIdx.x;

int tid = threadIdx.x;
int gridSize = blockDim.x*2* gridDim.x;
sdata[tid] = 0;

//load shared mem from global mem
while(myId < n)
{

sdata[tid] += d_in[myId] + d_in[myId + blockDim.x];
myId += gridSize;

}
__syncthreads ();

Then upon kernel launch we have

reduce6 <<<dimGrid6 , dimBlock , 1024* sizeof(int)>>>(reduced , array , 32);

Using the algorithm cascading we reduce the elapsed time down to 0.008192 ms, offering 513GB/s bandwidth,
and giving a 2.67578 times speed up.

Kernel Time 220 integers Bandwidth Step Speed Up Cummulative Speed Up
Kernel 1 0.132096 ms 31.814 GB/s - -
Kernel 2 0.071264 ms 58.8198 GB/s 1.853x 1.853x
Kernel 3 0.062816 ms 66.9017 GB/s 1.134x 2.102x
Kernel 4 0.034528 ms 131.713 GB/s 1.819x 3.826x
Kernel 5 0.023936 ms 175.572 GB/s 1.442x 5.519x
Kernel 6 0.021920 ms 191.720 GB/s 1.092x 6.026x
Kernel 7 0.008192 ms 513.001 GB/s 2.676x 16.13x

Table 1: Performance of Reduction via optimization

So putting it all together, we can achieve a speed up of over 16 times. Here is an interesting oberservation:

• Algorithmic Optimizations By changing the addressing and using algorithm cascading we achieved
10.23× speed up collectively.

• Coding Optimization By unrolling the loops we only achieved 1.58× speed up collectively.

So a good rule of thumb is to optimizing your algorithm first, then optimize your code using unrolling of
loops.

13

In conclusion – to fully optimize CUDA code, you should understand CUDA performance characteristics.
Mostly, memory coalescing, divergent branching, bank conflicts, and latency hiding. Consider the algorithm
that you are programming, ascertain if it is a compute limited algorithm or bandwidth limited. Using
parallel algorithm complexity theory, we found how to cascade the algorithm, allowing for quite a substantial
optimization. Identify bottlenecks in your algorithm, like we did with the memory and instruction overhead.
Finally, be sure to optimize the your algorithm, and then optimize your code.

14

	Optimizing Data Transfers in CUDA C/C++
	Measuring Data Transfers Times with nvprof
	Minimizing Data Transfers
	Pinned Memory
	About pinned memory
	Batching Small Transfers

	CUDA Streams
	The default stream
	Non-default streams
	Synchronization with streams
	Overlapping Kernel Execution and Data Transfer

	Optimizing Calculations

